Die Kristallstruktur von V₃Al und sein Mischungsverhalten mit isotypen Phasen

Von

H. Holleck, F. Benesovsky und H. Nowotny

Aus der Metallwerk Plansee AG., Reutte/Tirol und dem Institut für Physikalische Chemie der Universität Wien

Mit 1 Abbildung

(Eingegangen am 21. Februar 1963)

Im Bereich der homogenen Mischphase $V_{1,00-0,47}Al_{0,00-0,53}$ wird die metastabile Kristallart V₃Al erfaßt. V₃Al besitzt Cr₃O-Struktur (β-Wolfram-Typ). Lückenlose Mischreihen von V₃Al mit V₃Sb und Nb₃Sn werden nachgewiesen. Unter gleichen Bedingungen, Homogenisierung bei 1000 und 1100°C, treten dagegen mit V₃Si, V₃Ge und Nb₂Al Mischungslücken auf.

Nach der bisher bekannten Verteilung der Komponenten im Periodensystem¹, die zur Bildung von Phasen mit Cr₃O-Struktur befähigt sind, erschien es interessant, vanadiumreiche V—Al-Legierungen zu untersuchen, obwohl eine Löslichkeit bis etwa 53 At% Al im Vanadium gefunden wurde². Der Gitterparameter wächst dabei von: a = 3,031 Å (reines Vanadium) auf: a = 3,077 Å (Homogenitätsgrenze). Das in *M. Hansens* zusammenfassender Darstellung entworfene³ Zustandsdiagramm V—Al basiert hauptsächlich auf den Ergebnissen von *W. Rostoker* und *A. Yamamoto*⁴ einerseits sowie *O. N. Carlson*, *D. J. Kenney* und *H. A. Wilhelm*⁵ andererseits. Danach bestehen die Phasen: V₅Al₈, VAl₃, VAl₆ und VAl₁₁; dagegen ist die Existenz von VAl₇ nicht völlig

¹ F. Laves, in: Theory of Alloys, Amer. Soc. Met., Cleveland/Ohio, 1956. Siehe auch: M. V. Nevitt, Alloy Chemistry of Transition Elements, AIME-Meeting, February 1962, New York.

² C. B. Jordan und P. Duwez, Trans. Amer. Soc. Met. 48, 789 (1956).

³ M. Hansen, Constitution of Binary Alloys. McGraw-Hill Book Comp. Inc., New York, Toronto, London 1958.

⁴ W. Rostoker und A. Yamamoto, Trans. Amer. Soc. Met. 46, 1136 (1954).

⁵ O. N. Carlson, D. J. Kenney und H. A. Wilhelm, Trans. Amer. Soc. Met. 47, 520 (1955), s. auch ebenda S. 537.

gesichert. Von den genannten Phasen, die sich durchwegs peritektisch bilden, sind $V_5Al_8^5$ und VAl_3^6 auch kristallchemisch eindeutig charakterisiert. Vor kurzem wurde die Phase VAl_6 von *A. E. Ray* und *J. F. Smith*⁷ strukturell aufgeklärt; dieser Kristallart kommt die Zusammensetzung V_4Al_{23} zu.

Probenherstellung

Die Ausgangsstoffe waren Schmelzvanadium mit 99,9% V (Vanad. Corp. of America) und Aluminiumpulver (Marx & Co., Hallein). Vanadium wurde (ohne Hydrierung) zu Pulver zermahlen und mit Aluminium-Pulver im Verhältnis entsprechend 20, 25, 30, 40 und 50 At% Al gemischt. Diese Ansätze wurden sodann in Graphitmatrizen unter einem Druck von etwa 500 kg/cm² kalt gepreßt und anschließend unter mäßigem Druck rasch auf eine Temperatur von etwa 1500°C gebracht. So erhaltene Preßlinge waren vollkommen dicht; es lagen keinerlei Anzeichen für ausgepreßtes Aluminium vor. Die Proben wurden in der Folge 6 bzw. 10 Stdn. bei 1000°C geglüht.

Ergebnisse

Die Untersuchung der Proben erfolgte röntgenographisch mit Hilfe von Pulveraufnahmen (CrK_a-Strahlung). Das Röntgenogramm der Probe mit 20 At% Al zeigte in Übereinstimmung mit den Literaturangaben² die V(Al)-Mischphase; der Parameter wurde zu: a = 3,048 Å ermittelt. Hingegen trat in Legierungen mit 25 At% Al neben dieser Mischphase eindeutig eine neue Kristallart als Hauptbestandteil auf. Da der Gitterparameter der V(Al)-Mischphase mit a = 3,054 Å ziemlich genau jenem für 25 At% Al entspricht², kommt der neuen Phase zweifellos die Formel V₃Al zu. Proben mit 30 und 40 At% Al enthielten neben der V(Al)-Mischphase Spuren einer nicht identifizierten Phase. Die Gitterparameter der V(Al)-Mischphase liegen mit: a = 3,061 Å (30 At%) und a = 3.066 Å (40 At%) ganz nahe den von Carlson, Kenney und Wilhelm⁵ angegebenen Werten. Diese Autoren finden: a = 3,065 Å für 35 At% Al. In den Proben mit 50 At% Al tritt neben der V(Al)-Mischphase (a = 3,068 Å) ganz deutlich V₅Al₈ auf. Die Homogenitätsgrenze für V(Al) liegt demnach bei 1000°C bei etwa 45 At% Al, in Übereinstimmung mit den Angaben von Hansen³ über die Temperaturabhängigkeit der Löslichkeit. Auch der Gitterparameter bei maximaler Aufweitung (a = 3,068 Å) stimmt mit einem nach Literaturangaben⁵ extrapolierten Wert sehr gut überein. Der Parameter der V₅Al₈-Phase wurde zu: a = 9,205 Å bestimmt.

⁶ G. Brauer, Z. Elektrochem. 49, 208 (1943).

⁷ A. E. Ray und J. F. Smith, Acta Crystallogr. [Kopenhagen] 13, 876 (1960).

Die Phase V₃Al

Die Auswertung der Pulveraufnahme der Probe mit 25 At% Al ist in Tab. 1 wiedergegeben. Indizierung und Intensitäten lassen unmittelbar die Cr₃O-Struktur erkennen. Die berechneten Intensitäten für V₃Al stimmen aber nicht besonders gut mit den beobachteten überein. Zum Vergleich wurden daher die Intensitäten für V₃Sb errechnet, wobei sich zeigt, daß mit dem wesentlich höheren Atomformfaktor von Sb teilweise eine bessere Übereinstimmung erzielt wird. Dieser Sachverhalt wird auch, wie später ausgeführt, bei der Mischreihe V₃Sb--V₃Al bestätigt. Als

Gitterparameter für V₃Al ergibt sich: $a = 4,92_6$ Å. Im Vergleich mit entsprechenden Vanadium- und Niob-Phasen (Cr₃O-Typ) ist die Gitterkonstante von V₃Al bemerkenswert groß. Tatsächlich ist das Volumen der V₃Al-Zelle um rd. 4% größer als jenes der Mischphase V(Al) mit 25 At% Al, bezogen auf gleiche Teilchenzahl. Die V₃Al-Zelle (Cr₃O-Typ) weist im übrigen selbst ge-

Abb. 1. Verlauf der Gitterparameter der Mischphasen mit β -Wolfram-Struktur

genüber einem Mischkristall mit 53 At% Al (maximaler Parameter) ein größeres relatives Volumen auf. Dies ist offensichtlich auch der Grund, warum sich die V₃Al-Phase schwer bildet und bisher übersehen wurde.

Da diese Phase auch unter den gewählten günstigsten Bedingungen nicht völlig homogen erhalten werden konnte, sollte die Stabilität von V₃Al durch sein Mischungsverhalten mit anderen β -Wolfram-Phasen charakterisiert werden. Die Probenherstellung unter Zugabe von 25, 50 und 75 Mol% Zweitphase erfolgte wieder durch Heißpressen von Pulvermischungen der Komponenten und anschließende Homogenisierung bei 1000°C (10 Stdn.) unter Argon.

Die Systeme V₃Al-V₃Sb und V₃Al-Nb₃Sn

Auf Grund der weitgehenden Homogenität der Legierungen sowie des Verlaufes der Gitterparameter steht der lückenlose Übergang gemäß Abb. 1 von V₃Al und V₃Sb außer Frage, obgleich in der Probe mit 75 Mol% V₃Al Anteile der V(Al)-Mischphase mit: a = 3,057 Å vorliegen. Dieser Wert weist auch auf eine geringfügige Verschiebung im Al-Gehalt hin, und zwar derart, daß der Vanadium-Gehalt in der β -Wolfram-Phase etwas erhöht zu sein scheint. Damit im Einklang ist der extrapolierte Wert für V₃Al mit: a = 4,90 Å. Allerdings ist die Parameteränderung von V₃Sb nach V₃Al geringfügig.

Bemerkenswert ist, daß sich die Linienintensitäten der β -Wolfram-Mischphase V₃Al_xSb_{1-x} nicht wesentlich ändern; auch für V₃Al stimmen die relativen Intensitäten mit jenen von V₃Sb sehr gut überein, obwohl Antimon einen viel größeren Atomformfaktor besitzt. Dies kann die

Index hk!	10 ³ • sin ² ð beobachtet	10 ⁸ • sin² ϑ berechnet	Intensität beobachtet	Inten berec V ₃ Al	sität chnet V ₂ Sb	Bemerkung
(110)	109,2	108,0	st	43	40	
` ´	122,6		SSS			Fremdlinie
(200)	217,5	216,0	\mathbf{st}	46	38	
	247,0		SSS			Fremdlinie
(210)	271,0	270,0	$^{\rm st^+}$	431	43	
(110)	281,5	279,5	\mathbf{m}			V(Al)-Mischphase
(211)	325,7	324,0	sst	416	223	· -
(220)	433,9	432,0	s	4	7	
(310)	541,8	540,0	\mathbf{ms}	7	5	
(200)	559,2	558,0	ss			V(Al)-Mischphase
	635, 5		SSS			Fremdlinie
(222)		646,2		71	0,4	
(320)	701,8	702,8	m	151	15	
(321)	756,0	756,0	sst	211	118	
(211)	837,2	837,2	m			V(Al)-Mischphase
(400)	863, 3	863, 5	\mathbf{st}	168	43	
(330) (411)	969,8	971,0	st^-	(8,7)	$\left. \begin{array}{c} 20 \\ 82 \end{array} \right)$	

Tabelle 1. Auswertung der Pulveraufnahme einer V-Al-Legierung mit 25 At % Al (CrK_a-Strahlung)

Folge einer Metalloidstabilisierung oder aber einer Fehlordnung im Sinne eines Ersatzes von Aluminium durch Vanadium sein.

Der Verlauf der Gitterparameter im Schnitt: V₃Al—Nb₃Sn läßt ebenfalls auf eine lückenlose Mischreihe schließen (Abb. 1), wobei auch hier durch Extrapolation für V₃Al ein *a*-Wert von etwa 4,90 Å resultiert. Danach sieht es so aus, als ob die metastabile Phase V₃Al mit Cr₃O-Struktur einen merklichen Bereich besitzen würde. Wegen der Metastabilität der Phase ist jedoch der Schluß nicht zwingend. Interessant ist ferner die Feststellung einer T 1-Phase (V, Nb)₅(Al, Sn)₃ mit: a = 9,79; c = 5,14 Å und $c/a = 0,52_4$, die in der Probe mit 75 Mol% V₃Al neben der β -Wolfram-Phase beobachtet wird. Eine derartige T 1-Phase mit Aluminium-Stabilisierung wurde schon früher im System: Nb—Si—Al aufgefunden⁸.

⁸ H. Nowotny, F. Benesovsky und C. Brukl, Mh. Chem. 92, 193 (1961).

Die Systeme $V_3Al - V_3Si (-\dot{V}_3Ge, -Nb_3Al)$

Eine Probenreihe wurde bei 1100° C (18 Stdn.) unter Argon homogenisiert, eine andere bei 1000° C (10 Stdn.), doch waren alle Legierungen mit Ausnahme von V₃Si und V₃Ge mit jeweils 25 Mol% V₃Al heterogen. Demnach bestehen in allen drei Fällen weite Mischungslücken. Es ist möglich, daß hier die Glühbehandlung nicht genügend den Zusätzen angepaßt war.

Die Proben mit 25 Mol% V₃Al, Rest V₃Si oder V₃Ge, waren vollkommen homogen und fügen sich hinsichtlich des Gitterparameters (Abb. 1) in den zu erwartenden Verlauf ein.

In den heterogenen Legierungen auf diesen beiden Schnitten tritt neben der β -Wolfram-Phase wieder die V(Al)-Mischphase in Erscheinung. Proben auf dem Schnitt V₃Al—Nb₃Al enthalten neben geringen Anteilen an Nb₃Al die σ -Phase auf der Niob-reichen Seite, während man auf der Vanadium-reichen Seite hauptsächlich einen (V, Nb, Al)-Mischkristall (a = 3,08 Å) beobachtet. Es ist möglich, daß in den Niob-reichen Legierungen mit einem geringen Verlust an Aluminium zu rechnen ist.

Die Phase V₃Al besteht nach dem gegenwärtigen Befund offensichtlich nur innerhalb eines beschränkten Temperaturbereiches. Die Bildungsbedingungen werden gegenwärtig studiert. Dabei soll auch geprüft werden, ob diese Kristallart eine reine, binäre Phase ist, denn kleine Mengen an Metalloiden (C, N, O) können infolge der Herstellungsweise durchaus eingeschleppt werden. Der metastabile Charakter von V₃Al kommt nicht allein durch das merklich größere Volumen gegenüber der Mischphase zum Ausdruck, sondern auch im Vergleich analoger Paare: Mo₃Al--Mo₃Si einerseits und V₃Al—V₃Si andererseits. Die Parameterdifferenz ist für die Vanadiumphasen erheblich größer. Die Diskrepanz wird ebenso auffällig, wenn man V₃Al als Ordnungsstruktur der V(Al)-Mischphase auffaßt. Denn im allgemeinen besitzen die geordneten Zustände wegen der zusätzlichen Kräfte das relativ kleinere Volumen. Ein interessantes Beispiel in diesem Zusammenhang ist Ti₃Hg, das sowohl im Cr₃O-Typ wie auch im Cu₃Au-Typ (geordnete kubisch dichte Packung) kristallisiert. Das Volumen ist für den Cr₃O-Typ um etwa 3% kleiner. Für einen Vergleich mit der Mischphase im Falle V₃Al hätte man allerdings noch die Korrektur gemäß Übergang von K. Z. 12 zu 8 zu berücksichtigen, die etwa obigen Betrag kompensiert.

Im Hinblick auf das Verhalten der β -Wolfram-Phasen bei tiefen Temperaturen (Supraleitfähigkeit) kommt solchen Kombinationen⁹ Bedeutung zu, es sei jedoch bemerkt, daß z. B. G. F. Hardy und J. K. Hulm¹⁰ für eine Legierung der Zusammensetzung V₃Si_{0,9}Al_{0,1} einen gegenüber V₃Si etwas niedrigeren Sprungpunkt bestimmt haben.

⁹ H. Holleck, F. Benesovsky und H. Nowotny, Mh. Chem. 93, 996 (1962); 94, 473 (1963).

¹⁰ G. F. Hardy und J. K. Hulm, Physic. Rev. 93, 1004 (1954).